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The Variation  of the Natural Frequencies of Road Vibrator-rollers, as a
Function of the Parameters of Neoprene Vibration Isolation Elements
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This paper studies the influence of positioning angles of neoprene vibration isolation elements from the first
elastic stage, upon the natural frequencies of the vibrator-roller type CVA-10. A simplified computing dynamic
model with four degrees of freedom has been used in order to determine the influence of positioning angle
on the natural frequency by means of experimental results.
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In their structure, the vibrator-rollers contain neoprene
elements, which realize the elastic link between the
different subassemblies and generate and maintain the
desired vibrations of the roller-compactor, while isolating
and reducing the undesired vibrations of the other
subassemblies, such as the driver’s seat, the engine-
hydraulic pump group, and other auxiliary equipment [1].
Neoprene elements have a variety of other vibration
isolation applications, e.g., for tram railway supporting or
for building base isolation against seismic actions [2,3].
Numerous experimental researches and finite element
simulations have studied neoprene elastic properties and
their influence on equipment modal behaviour [4-6].

ICECON company has designed a self-propelled vibrator-
roller, called CVA-10, made of two stages of vibration
isolation elements using rubber dampers. Using two stages
instead of a single vibration isolation stage is obviously
much more advantageous [7-10].

Angular Frequency Analysis
In order to obtain the desired vibrations of the roller-

compactor and to reduce the undesired vibrations of other
subassemblies, an influence analysis of the stiffness of
the neoprene damping elements is necessary. In this paper,
a first part of this analysis is provided, i.e., the influence of
the stiffness of the neoprene damping elements on the
CVA-10 natural frequency drift [7,8].

Figure 1 shows the self-propelled vibrator-roller CVA-10,
composed of the following elements: 1 – roller-compactor;
2 – front chassis; 3 – first vibration isolation stage; 4 – second
vibration isolation stage; 5 – rear chassis; 6 – rear roller
(used for the rear drive). Taking into account the symmetry
of the vibrator-roller with respect to the longitudinal median
plane and the symmetrical construction of the front chassis
with respect to the roller-compactor axis, the CVA-10
vibrator-roller can be modeled as in figure 2. So, in this
paper a 2D vibrator-roller model is used. This 2D simulation
model is characterized by 4 degrees of freedom, where
the two vibration isolation stages have been modeled by
using only elastic elements, due to the fact that the
difference with respect to the use of viscoelastic elements
is about only 5%, so it can be neglected.

The kinetic energy of the CVA-10 mechanical system,
described by the dynamic model in figure 2, is [11-14]:
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   (1)

where: m1 = mv – mass of the roller-compactor; m2 – mass

of the front chassis;  = reduced mass of the

rear chassis at supporting point 3;  =
reduced mass of the rear chassis at supporting point 4, to
which is added the mass ms of the static drive roller;

 reduced mass of the rear chassis;

C(m,J) is the mass center; m – the mass and J – mass
moment of inertia according with the normal axe passing
thru C.

Using the matrix notation and the inner product in Hilbert
spaces, the square expression (1) can be written as:

Fig. 1. Self-propelled vibrator-roller CVA-10

Fig. 2. 2D simulation model of CVA-10



MATERIALE PLASTICE ♦ 48♦ No. 2 ♦ 2011 http://www.revmaterialeplastice.ro 145

         (2)

where  is the velocities vector, with  and
where M is the inertia matrix.

The inertia matrix M is positive definite, symmetric and
nonsingular:

                         (3)

The deformation potential energy of the mechanical
system, with respect to the static equilibrium position, has
the following expression [11-14]:

   (4)

The quadratic form (4) can be written in matrix notation
as:

                                          (5)
where:

Ko = diag{k1, k2, k3, k4} – the stiffness matrix;
u–the elastic deformation vector, with uT = [u1, u2, u3,

u4].
The components of the elastic deformation vector u are

determined from the displacements xj = 1,...,4, as follows:

The relation between displacements and deformations
is:

u = Ax,                                    (6)
where:

A – the influence matrix of the displacements on
deformations;

x – displacements vector, with xT = [x1, x2, x3, x4].
The matrix A can be written as:

(7)

Using relation (6), the quadratic form (5) can be
expressed in the coordinates of the displacements vector
x as follows [15]:

                                    (8)

If one considers the matrix A = (aij), i, j = 1,...,n as a
continuum linear operator on the Hilbert space Xn, then the
adjoint operator is AT = (aij), i, j = 1, ...,n.  Thus, relation (8)
becomes [15-17]:

       (9)
or, by taking into account relation (6),

     (10)

By denoting K = ATKoA, it finally results:

        (11)
For the elastic case and without considering any

disturbing forces, the differential equations of motion are

given by the Lagrange equations of second kind, as follows
[11-14]:

                             (12)

In order to solve the differential equation (12), one
searches the solutions of the following form [18]:

   (13)
where:

x– column displacements vector (xT = [x1, x2, x3, x4]);
a-vector of the unknown amplitudes, with  at = [a1, a2,

a3, a4];
p – natural angular frequency.
By replacing the solution (13) in (12), one obtains the

following algebraic equations system [18]:

 (14)

The algebraic system (14) has to be satisfied by the
vector a and scalar p, thus it is necessary to determine the
eigenvalues and eigenvectors of the square matrices K
and M.

The determination of the natural angular frequencies
(eigenvalues p1, p2, p3, p4) and of the eigenvectors was
realized using a FORTRAN code. Thus, the 4 eigenmodes
were determined, each one corresponding to a different
positioning angle of the neoprene damping elements [19].

The natural angular frequencies were computed for
different angles between the compression axis of the
neoprene damper and the vertical axis. Four different
neoprene compounds were considered for the first
vibration isolation stage of the self-propelled vibrator-roller
CVA-10 [20].

In dynamic regime, the variation of the stiffness
coefficient, corresponding to the first vibration isolation
stage, with respect to the positioning angle α, is shown in
figure 3, being described by the following equation [19,20]:

 (15)
where:

ka– equivalent stiffness coefficient corresponding to the
positioning angle α;

kc – equivalent compressive stiffness coefficient, i.e.,
for α = 0;

ky – equivalent shear stiffness coefficient, i.e., for α =
90o.

Fig. 3.  Variation of the stiffness coefficient of the first vibration
isolation stage with respect to the positioning angle α
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Figures 4, 5, 6 and 7 show the variations of the natural
angular frequencies, i.e., p1, p2, p3, p4, with respect to the
positioning angle α  and taking into account the quality of
the neoprene [1,19,20].

Figures 4-7 show that, if the inertia and stiffness
characteristics of CVA-10 do not change in time (during
the dynamic regime), then for different values of the
positioning angle α  between 0 and 90o, the natural angular
frequencies p1, p2 and p4 are variable, while the third natural
angular frequency p3 remains constant. This variation
analysis is very important for the design of the vibrator-
roller, in order to find the best technical solutions for the
neoprene dampers, in what concerns their functionality,
as well as the neoprene compound quality. The goal is to
determine the dynamic system to operate in post-
resonance, i.e., to have ω >p4. During the design phase,
the appropriate positioning angle α is found taking into
account two criteria: 1) the working regime criteria,
ensuring the desired vibrations of the roller-compactor and
the reduction of the undesired vibrations of other
subassemblies; 2) the neoprene elements bearing capacity
criteria.

The computation of the natural angular frequencies was
performed for the following constant inertia and stiffness
characteristics of CVA-10, which have been experimentally
determined [8]:

Conclusions
 The variation of the natural angular frequencies p1, p2

and p4 upon the positioning angle α is quite similar with
the variation with the equivalent stiffness coefficient of
the first elastic stage.

 The third natural angular frequency p3 remains constant,
without being influenced by the variations of the positioning
angle α.

The values of the natural angular frequencies for α = 0o

(neoprene dampers working in compression) are different,

Fig. 4. Variation of the first natural angular frequency p1 with
respect to the positioning angle α and taking into account the

quality of the neoprene

Fig. 7. Variation of the second natural angular frequency p4 with
respect to the positioning angle a  and taking into account the

quality of the neoprene

Fig. 5. Variation of the second natural angular frequency p2  with
respect to the positioning angle α  and taking into account the

quality of the neoprene

Fig. 6. Variation of the second natural angular frequency  p3 with
respect to the positioning angleα  and taking into account the

quality of the neoprene
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depending on the quality of the neoprene. On the other
side, for α = 90o (neoprene dampers working in shear),
the natural angular frequencies converge to a single value.
This means that, when working in shear, neoprene dampers
of the same shape and size, but made of different neoprene
compounds, lead to almost the same values of the natural
angular frequencies, so in this case it is only the shear
strength of the damper criteria that matters.
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